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ABSTRACT

A duality theorem of Heathcote exhibiting a relationship
between first passage times of the queue length in the GI/M/1
queue and the busy period of its dual M/G/1 queue is generalized
to the phase type queues GI/PH/1 and PH/G/I. The phase type
distributions include a number of well-known models such as
generalized Erlang and hyper-exponential as special cases and
form a versatile class with a number of interesting closure

properties.

KEY WORDS

Queueing theory, duality, phase type distributions




.

1= 1 Lo AN | i e 210 1

1. Introduction

The problem, discussed in this paper, arose in the context
of a larger investigation into the nature pf the busy period of
subclasses of the GI/G/1 queues, which are denoted by the
symbols PH/G/1 and GI/PH/1 and which are defined below. We
attempted i.a. to generalize the well-known duality result of
Heathcote [2], which relates the limit distribution of the times
between points of increase for the maximum queue length process
in the GI/M/1 queue to the distribution of the busy period of
the dual M/G/1 queue. This result implies in particular that
in an unstable GI/M/1 queue the maximum queue length process
grows approximately like the counting process of a renewal
process. L

The duality theorem of Heathcote carries over to the GI/PH/1
and PH/G/1 queues, but the technical difficulties of the proofs
are substantially greater than in [2]. Several deeper properties
of the matrix transforms used in the study of these queues are
needed, and the methods of the present paper may be of
independent interest. Our main theorem implies in particular
that the maximum queue length process in an unstable GI/PH/1
queue grows approximately like the counting process of an

appropriately defined Markov renewal process.

2. Phase Type Distributions and Phase Type Renewal Processes

a. Phase Type Distributions:

A (continuous) probability distribution of phase type,

introduced by M. F. Neuts [4], is any continuous probability
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distribution on [0,») which is obtainable as the distribution
of the time till absorption in a continuous-time finite state
space Markov chain with a single absorbing state into which
absorption is certain. The class of such distributions includes
a number of well-known particular cases such as generalized
Erlang and hyper-exponential (i.e., a mixture of a finite number
of exponentials) distributions and due to its interesting
closure properties [4] constitutes a versatile class with
properties especially useful in the algorithmic solution of
several queueing models (c.f. references in [5] and [8]).

To be specific, consider a Markov chain with state space
{1,...,m,m+1}, initial probability vector (g.am+]) and

infinitesimal generator

[=]
o

where g=(a],...,um), T is a non-singular mxm matrix with T, <0
and Tijgo for i#j, and T°20 is an m-vector satisfying Te+T°=0
with e'=(1,...,1). For such a Markov chain the probability
distribution of X, the time till absorption in m+1, is given by
the ¢.d.7.,

H(x)=1-aexp(Tx)e, x30 (2.1)

Definition 2.2: Any probability distribution H(:) obtained as

above is called a Phase Type Distribution (PH-distribution), and

the pair (a,T) is a _representation of H(-).

Remark: To avoid uninteresting complications, in the sequel we

shall assume am+]=0 so that H(+) does not have an atom at O.




Example 2.3: The generalized Erlang distribution which is the

convolution of m independent exponential distributions with

parameters, say, Myse sl respectively has representation

a=(1,0,...,0)
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Example 2.4: The hyper-exponential distribution which is the

mixture of m exponentials with parameters, say, Myseseslp has
a representation T=d1ag(-u]....,-um) with the components of a

giving the respective mixture ratios.

b. Renewal Processes of Phase Type:

Each time the Markov chain Q becomes absorbed in the state
(m+1), restart it by performing a multinomial trial with possible

outcomes 1,...,m and probabilities Apseeesa to pick a new

m
"initial state". Considering each absorption into the state m+l
as a renewal, we obtain a renewal process for which the time
between any two successive renewals has c.d.f. H(+), the PH-
distribution given by (2.1). Such a renewal process is called a

Renewal Process of Phase Type (PH-renewal process) (Neuts [5]).

The above procedure also constructively defines a new Markov
chain with state-space (1,...,m}, initial probability vector a
and infinitesimal generator Q*=T+T°A°, where A°=d1ag(a].....um)
and 7°=(T7°,...,T°). This Markov chain describes the "phase" of

the system and is of considerable importance. In [4] it is




shown that one may, without loss of generality, assume that the

representation (a,T) of H(+) is so chosen as to make Q*
irreducible, and we shall henceforth assume that this is indeed
the case.

We let 6 denote the stationary probability vector of the
Markov chain Q*, i.e., the unique (strictly positive) vector

satisfying 6Q*=0, 6e=1. It may be easily verified that g--ng",

where X-lﬂ-gT-]

e is the mean of H(-.).

The mxm matrices P(v,t), v>0, t>0, defined in [5] are such
that the entry PJJ.(v,t) is the conditional probability, given
that the initial phase is j, that at time t+, the Q*-chain is in
state j' and that v renewals have occurred in (0,t]. It is

known [5] that these have generating function
def =

P(z,t) = & z"P(v,t)=exp[(T+zT°A°)t], Ilz[gl, t;0.
v=0
We also recall [6] that, under the assumption Q* is irreducible,
the matrices P(v,t), v21, t>0, are all strictly positive.
Further, it may be easily seen that Pii(o.t)>0 for all t>0,

l;igm.

3. The Phase Type Queues

a. The GI/PH/1 Queue:'

Consider a GI/G/1 queue in which the service time c.d.f.
H(+) is of phase type with representation (a,T) and where the
inter-arrival times are i1.1.d., with a non-degenerate probability
distribution F(:). Sﬁch a model, denoted by GI/PH/1, has been
discussed in detail by Neuts [6]. and for later use we quote the

following results.




Let ta denote the epoch of the n-th arrival, Cn the size of

the system at v _+ and Jn the phase of the service at 'n*‘ Then

n
(((n.J".xn-xn_‘): n>0}, where To;t_"o, defines a semi-Markov

sequence with state space {(1,2,...)}x{1,...,m}x[0,=) and transition

matrix Q(x) given by

o

TR T R SR
ﬁ‘(x) A](x) Ao(x
(x) (

)
Q(x) = |8, Ap(x) Aj(x) Ag(x) ...| . x30,

where,

A (x)-;P(n.t)dF(t), n30, x30,
n 0 -

L X
B,(x)= & sP(v,t)dF{t)A°°, n30, x30,
v=n+l 0

where A°° is the mxm matrix each of whose rows is a.

Since F(+) is non-degenerate, we have (from the strict
positivity of the matrices P(v,t) for v21, t>0 and the positivity
of the entries P, (0,t) for t;0 mentioned at the end of Section 2)
that the matrices Andsfﬂn(w), n2l, are all strictly positive;
further, the matrix Aodgfﬂo(w) is such that each of its diagonal
entries is positive. This entails that the embedded Markov chain
with transition probability matrix Q(«) - with possibly some of
the states (1,j) removed - is irreducible and aperiodic. We
shall conclude our introduction to the GI/PH/1 queue by recalling
[6] that this queue is stable iff p=0g>1, where 6 is (also) the

invariant probability vector of Adsf ) A“. and g= ¥

nA_e.
n=0 n=l ™
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b. The PH/G/1 Queue:

By PH/G/1 we denote a GI/G/1 queue in which the arrival
process is a PH-renewal process. Note that this queue is the
dual of the GI/PH/1 queue defined above in that it may be
obtained by reversing the roles of inter-arrival times and
service times in the latter. The PH/G/1 queue is a sub-class
of the more general N/G/1 queues studied by V. Ramaswami [8],
and we shall state below some basic properties concerning the
PH/G/1 queue by particularizing results obtained in [8].

Let us assume that the arrival process is the PH-renewal
process with representation (a,T) and that the service time
c.d.f. is given by F(+). Defining ;n to be the epoch of the
departure (r0=0), and én and jn to be respectively the queue
length (i.e., the number of customers in the system) and the
phase of the arrival process at v +, it is easily seen that

n

((én'jn’;n+]'%n): n>0} is a semi-Markov sequence with state

space {(0,1,...tx{1,...,m}x[0,«~) and transition matrix
P.. ~ -~

ST I ) M
Ao(x) ﬂl(x) ﬂz(x)

Q(x) = 0 Ao(x) A](x) AL « X0,
0 0 Ao(x)

where ﬂn(-). n20, are as defined earlier in (a), and

- X &
Cn(x)-fexp(Ty)-T°A°0An(x-y)dy. n>0.
o .

It is easily seen that the Markov chain defined by Q(«~) is
irreducible and aperiodic. We recall from [8] that the PH/G/

n-th

1




queue is stable iff p=0g<l. Further, p=iu, where u is the mean
of F(+), is the traffic intensity of the PH/G/1 queue.

Basic to the discussion of tﬁe PH/G/1 queue are the first
passage times from the set of states l-{(l}j): IT<jsm} to the
set of states 0={(0,j): T1sjsm)} which are governed by the matrix
G(x), x>0, whose (j,j')-th entry is the probability that starting

at (1,j), the process enters the set 0 for the first time at or

before time x by visiting the state (0,j'). Defining the Laplace-

Stieltjes transform
G(s) = re"S%dG(x), $20, (3.1)
0

d | we have

Theorem 3.2:

(i) The matrix G(+) satisfies the matrix functicnal equation

6(s) = ¢ A, (s)6"(s), s30, (3.3}
n=0

! where

A (s) = 6e'sxd§n(x). $20.

(ii) For s>0, there exists a unique non-neqgative matrix G(s)

which satisfies (3.3). For s>0, G(s) is analytic and can be

written in the form (3.1) where the entries of G(-) are

i, ot i g

(defective) probability mass-functions.

TR

(ii1) The matrix G=G(0+), defined by continuity, is substochastic,

and is the minimal solution in the class of substochastic

matrices of the matrix functional equation
! 6= 1AQG" (3.4)
n=0
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(iv) If pgl, then G is stochastic. If p>1, then at least one
component of Ge is less than one.
(v) For any 520, G(s) is strictly positive and is the monotone

limit of the non-decreasing sequence {Gn(s)} defined by
0

6.(s) = O
e (3.5)

- e v
6.4q(s) = vfoAv(s)Gn(s), n>0

Proof: A1l the results above follow from Theorem 2.2.11 in [8]
which in turn is proven by Neuts [7] in a more general context
in the analysis of Markov Renewal Processes with Q(:) of the

form given above.

Remarks:

1. In view of the structure of Q(+), we have viat G(-) also
describes first passages from the set i+1={(i+1,j): 1gjgem)

to the set i={((i,j): 1gjgm} for any i20.

2. Note that the i-th entry of G(s)e is the Laplace-Stieltjes
transform of the busy period starting with one customer and in
phase 1i.

3. Equation (3.3) generalizes Takacs' equation for the M/G/1

queue.

4. First Passage Times in a GI/PH/1 Queue

Consider the GI/PH/1 queue defined in Section 3a. By
level n we denote the set of states {(n,1),...,(n,m)}. The
principal objects of study of this paper are the first passage
times from n to n+k in the GI/PH/1 queue; these will be the

subject matter of this section. In the sequel, we let for x>0,
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n,k>1, D ¢ (X) denote the mxm matrix whose (i,j)-tk entry

n,n+

6" n+k(i.j;x) is the conditional probability that the process

enters n+k for the first time at or before x by visiting (n+k,j)

given that it starts at level n and in phase i. We also define

the Laplace-Stieltjes transform

ra SN
Dn.n+k(s) = 6e an,n+k(x)’ s20.

Proposition 4.1: For n21, k22, we have

Dn.n*k=0n.n+l*0n+l,n*2* """ % (4.2)

n+k-1,n+k’
and

D D (4.3)

n.n+k' n,n+l Dn+l.n+2 """ n+tk-1,n+k’

where * in (4.2) denotes matrix convolution.

Proof: The transition from n to n+k can occur only along a path

of first passages from n to n+l,..... , from n+k-1 to ntk. Given

any sequence j],...,jk_]c{l,...,m} denoting the phases at the
epochs of such first entrances to n+l,...,n+k-1, the duration
between these first entrance times are conditionally independent.
This is an immediate consequence of the Markov property at
transition epochs for the Markov Renewal Process defined by

Q(+). Hence (4.2). (4.3) follows immediately.

Theorem 4.4: For n21, s20,

p-ytlopap (8)* 3 Av(s)A°°D"n+](s) (4.5)

v=] vEn

n-1
Dn'n+](s)=A0(s)+ ) Av(s)D

(where the second term in the right side is taken to be 0 when

n=1).

Proof: Let N denote the number of departures in the first
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inter-arrival interval. Also let us denote by S the event
that the process enters n+l at or before time x and that the
phase at which it enters n+l1 is j. Then by a simple probabilistic

argument, we have

P(S,N=v|£0=n.J0=i)=

(" x
/P, (0,u)dF(u), ¥ 5
o 1
X m s
< 6 kElpik(v.u)ﬂn.vn,n”(k.j;x-u)dF(u), if lcven-1
X . ( : e (
Foop R P te) B e D k,jsx-u)dF(u), if v=n, :
L0 van =1 1 =1 ko1,
whence

Dy, pey (1sd5x)=

1
1

n

X - m 2
6Pij(0,u)dF(u)+v§ ElPik(v,u)Dn-v+]’n+](k,j;x-u)dF(u) !

O Xx

k
® . X

m m
+ 2 r e, v,u)x a b (k,d3x-u)dF(u).
ven 0 g=1 1% k=1 K 1.0+

Computing the Laplace-Stieltjes transforms of these and putting

the result in matrix notation, we get (4.5).

From the irreducibility of Q(-) it is clear that the matrix
Dn n+l(0) should be stochastic. That this is indeed the case is

verified below by directly using (4.5).

Lemma 4.6: D] 2(0) i's stochastic.




Proof: By (4.5),

Dy 2(0) = Ag+(A-Aj)A°°D, ,(0)

OY',

A°°Dy ,(0)e = A°°A e+A°®(A-A()A°°D; ,(0)e.
Letting A°°D] 2(0)g=ug, this yields
u = (aAje)+u-(ahse)u,

and since aA.e>0, u=1. Thus

0
A°°D-| ,2(0)£=g
Now, multiplying (4.7) by e and using (4.8), we get

D],Z(O)g = Aog+(A-A0)g = e.

Theorem 4.9: For all n,k21, D

n,n+k

n>2, k21, D (0) is strictly positive.

n,n+k

Proof: 1In view of (4.3) it suffices to prove the results for

k=1. Let n21 and assume as inductive hypothesis that

01,2(0)""’Dn,n+1(0) are all stochastic. We now show that

Dn+l,n+2(°) is stochastic.
Using (4.5) and (4.3) it is easily seen that
[I-M]Dn+'| ,n+2(0) = Ao:
where

1 v

n n
M=Ay*+ L AD oy, ne(0)+(A- £
v=2 v=

oAv)AOODI,n+1(0)

(with the second term on the right being 0 when n=1).
Now M;A]>>0, and Mg;g-Aog<<g. Thus the strictly positive

matrix M has spectral radius n less than 1. That

(0) is stochastic. Also for

e i e v ekt o e N e
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D 2(0)>>0. follows now from (4.10) by writing it as

n+tl,n+

et g
r M AO.

Ope1,ne2(0) =
v=0

Let y>>0 be such that yM=ny, ye=1. Then from (4.10), we have

(1=m)yDpyy ne2(0)e = YAoe

= y(e-Me) = (1-n)

and since n<1, 1Dn+"n+2(0)§-l. Thus D Z(O)E'S' and the

n+l,n+
proof is complete by mathematical induction.
Before concluding this section we list some simple but

useful results as

Proposition 4.11: Let

¢(s) = re”*dF(x), s30.
0
For all s20, n,k21,
a) 0. y(slese
b) D, n4q(s)esels)e

c) Dn'n+k(s)g;{o(s)}kg

Proof: (a) is immediate from the definition of D, n+k(')‘
(b) is got by applying (a) in (4.5). Finally (c) is got by

applying (b) in (4.3).

5. The Duality Theorem

In this section we prove the following duality theorem

which generalizes the result of Heathcote [2] to the phase type

queues, discussed in Section 3,




13

Theorem 5.1 (Duality Theorem):

Let s>0 be fixed. As n+», the matrices D, n+](s) describing
. L]

the first passage times from n to n+l in the GI/PH/1 queue converge
to the matrix G(s), where G(s) is the unique non-negative i

solution of the non-linear matrix functional equation

G(s) = ;Av(s)Gv(s) (5.2)

v=0
and which describes the first passage times from 1 to 0 in the
dual PH/G/1 queue. Further the limit G(0+) is stochastic iff
pgl, i.e., iff the GI/PH/1 queue is unstable.

The lengthy proof of Theorem 5.1 is accomplished in several .
stages. In the ensuing discussion s>0 is assumed to be fixed.

Also we let iiﬂ Dn,n+1(s) and ;12 Dn,n+1(s) denote the matrices

whose respective (i,j)-th entries are Tim Dn n+1(1
n->e :

lim 0 .,(i,jis). From Proposition 4.11(b) it is clear that

N> .

these matrices are strictly substochastic; further,

»j3s) and

0glim D oy q(s)sTim Dy netl(s) {5.3)
N> N>
Lemma 5.4: Define 3
Mi(s) = Ag(s)
(sdeRglale BA (o). "H." HiEE)
M s)=A.(s)+ ¢ A (s i M (s) , n>
n+1 0 v=l V k=n-v+2 k e

TR SRS

where the matrix product is formed by taking the terms in

increasing order of the index k. Then
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(i) Mn(s) is strictly substochastic for every n>1,

(ii) Mn(s) is entrywise non-decreasing in n,

(11i) Lim Mn(s)-G(s). where G(s) is the unique solution of

N>

(5.2); the limit is taken entrywise.

Proof: It is obvious that M](s) is strictly substochastic.
Now, since I A (s)e<<e, there exist constants w(s)>0 and §(s)>0
v=0

such that w(s)+s8(s)<1,
\Y

"~
C—

A (s)esw(s)e and Aj(s)ess(s)e. Now,

M ()=L1-A) ()17 (5)= & AY(s)Ag(s),

v=0
§(s
y(s)esoytiy ecce.

In other words, Mz(s) is also strictly substochastic, and clearly
Mz(s);M](s).

Now, assume as inductive hypotheses that Mk(s)ng+](s) and

whence

Mk+](s)g<<g, for 1c<kgn. We have,

Mpap($)=0T-TA () +AL ()M L (84 oA (M, (s) .M L (s)1]7TA(s)
2[1-(A (s)+A,(SIM ($)+.. . +A (s)M,(s).. .M (s)117 1A (s)
=M 4q(s).

The inequality above is obtained by writing the inverse as a
power series, dropping the term An+](s)M2(s)...Mn+](s). and
using the induction hypothesis Mk(s);Mk+](s). l¢kgn. Furthermore,

Hntz(s)g-vEOIA](s)+A2(s)Mn*](s)+...+An+](s)M2(s)...Mn+](s)}“A0(s)g

by using the substochastic of Mz(s)....,Mn+](s) assumed as




)
|
5
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inductive hypothesis.
Having proved statements (i) and (ii), at this point these
also imply the existence of lim Mﬁ(s)=M(s). So all that we need

n>owo

to prove is that M(s)=G(s). We have,

Mn*‘(s) = Ao(s)+A](s)Mn+](s)+...+An(s)M2(s)...Mn+1(s)

n
s T A (s)M7, (s)

=
v=0 Y n

< : A,(sIM”(s)
v=0

Letting n+« this yields

M(s) ¢ ; A, (s)MV(s) (5.5)

v=0
Also

Mpem(S)2AQ(s)+A (sIM o (s)+o o +A (SIMq(s)o oM (s)

yields upon letting m»>=, that

n
M(s) 2 = Av(s)Mv(s), for all n20.
v=0

Since the above inequality holds for every n,

M(s) 2 T A (SINV(s) (5.6)

v=0

nv

Now, by (5.5) and (5.6),

M(s) = T AL(sIMV(s),

v=0
and it follows that M(s)=G(s) by appealing to the uniqueness
of the solution to (5.2) stated in Theorem 3.2(ii).

Lemma 5.7:

1im Dn,n+l(s) > G(s) (5.8)

n+e




i
4
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Proof: It suffices to show that D ., (s)2M (s) for all n31

where {Mn(s)} are as in Lemma 5.4. Clearly, D, 2(s);M](s).
Assume as inductive hypothesis that D, rH_](s);M“(s) for
n=1,...,k-1. Then

Dy ke (S)=LI=CA ()4, (5)0, Ly ()4 4R, ()0, (s)117 VA (s)
2[1-(AL(5)4A, (SIM_((s)*...+A_ (sIMy(s). ..M 1 (5))]17 1A (s)
=Mk(s)s

where the inequality is obtained by using the induction hypothesis
and (4.3) in the series expansion of the inverse. The proof is

now complete by mathematical induction.

Lemma 5.9: Let

R(s) = Tim D"’n+](s)

|1

Then
R(s) ¢ = Av(s)RV(s)

v=0

Proof: For sufficiently large n and fixed N<n-1, we have,

n-1 ®

Dn’n+](s)-Ao(s)+v§]Av(s)Dn_v+]'n+](s)+v£nAv(s)A°°D"n+](s) by (4.5)
N n-1

=Ag(s)+ = A (s)D_ iy naq(s)t T A (s)D

v=] v=N+1 n-v+l 'n+](S)

+ T A (S)ACD L (s),
v=n

and letting now,
n-1

N
R(s)gAg(s)+ z]Av(s)R“(s)+11m t A _(s)D
v= d

n+e y=N+l Y n-v*]’n*](S).

for,

Tim © A (s)A°°D, .. (s)=0.

n+® v=n




Now letting N-«, we get

Ris) = 2 Av(s)R“(s).
v=0 -
since,
n-1

T TR £ A (S)0,_4q nep(8)=0

N+o noe y=N+]

as is seen from the fact that
n-1 ®

I A (s)D (s)es = A (s)e+0 as Noe,
vaN+1 ¥ n-v+l,n+l T % - =

Corollary 5.10: Denoting the maximal eigenvalue of a non-negative

matrix C by sp(C), we have that

sp[Tim D ,1(s)] < sp[6(s)] (5.11)

Proof: By (5.3), (5.8) and the strict positivity of G(s), note
that R(s)>>0. Let n(s) be the spectral radius of

R(s)*IIE Dn.n+l
R(s) associated with n(s). Then

(s), and let x(s)>>0 be a right-eigenvector of

n(s)x(s) = R(s)x(s)

g : A (s)RY(s)x(s) by Lemma 5.9

v=0

= zoAv(S)n“(s)L(s)

implying that
A*(n(s),s)x(s) 2 n(s)x(s) (5.12)

where

A*(z,s) = © A (s)z’, 0gzg)
v=0 Y

Let £(z,s) be the Perron-Frobenius eigenvalue of A*(z,s). Now

(5.12) implies that
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E(n(s)ss) 2 n(s) (5.13)

Now, for fixed s>0, a theorem due to J. F. C. Kingman [3]
implies that the function logﬁ(e't.s) is convex and decreasing
for t>0. Also G(s) is the unique soiution of equation (5.2) whence

it follows that sp[G(s)] is the unique solution z, of the equation

E(Z.S)'z. 0<Z<1,
-t

so that z,=e 0

,» Where

-to
log[e(e ,s)]--to. .5l




N

Figure 1

y=logt(e " t,s)
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-t* _tt
Setting s=e in equation (5.13), we obtain logt(e §)2-t*
which upon consideration of the graph in Figure 1, implies that
t‘;to. This clearly is equivalent to the inequality

sp[R(s)]ssp(G(s)], which we set out to prove.

Proof of Theorem 5.1: By Formulas (5.8) and (5.11), we have

sp(lim 0 .y (s)]2sp(G(s)]ysp[Tim D
n_’m A

n+>~

1 (s)]

n,nt

But by (5-3)3
spllim D, (s)]gsp[Tim O ., (s)].

n+« N+«

Thus we have

sp(lim 0 . (s)]=sp[G(s)]=sp[Tim D . (s)].
ne>w » n+ »
Since %%g Dn’n+](s)§ljf'0n’n+]\s), and both are irreducible non-

negative matrices, their spectral radii can be equal only if the
inequality is actually an (entrywise) equality [1]. This proves

the existence of lim Dn n+](s). Also (5.8) an” the fact that

n+o

sp(G(s)]rsp[%%g D“'n*](s)] implies that lim Dn.n+](s)=G(s).

N+
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